Postingan

Menampilkan postingan dari Januari, 2022

KOORDINAT KUTUB DAN KOORDINAT KARTESIUS

Gambar
Koordinat Cartesius dan Koordinat Kutub Matematika Koordinat kartesius suatu titik merupakan posisi suatu titik dalam arah sumbu x dan dalam arah sumbu y terhadap titik asal O (0,0) sebagai titik pusatnya. Koordinat kartesius ditulis dengan notasi titik P (x,y). Koordinat Kutub (Polar) suatu titik merupakan besarnya jarak suatu titik tertentu P (x,y) terhadap titik asal O (0,0) dan besarnya sudut yang terbentuk oleh garis OP terhadap sumbu x. Koordinat kutub ditulis dengan notasi P (r,α°). Untuk mengkonversi koordinat kartesius menjadi koordinat kutub dari suatu titik digunakan rumus sebagai berikut. Koordinat kartesius ----> Koordinat Kutub                      P (x,y)    ---->  P (r, α°) dimana: r = √x²+y²                 α = tan^-1 (y/x) atau tan α = y/x Nilai α dapat ditentukan dengan menggunakan tabel Matematika Sin Cos Tan atau menggunakan kalkulator. Cara menentukan nilai α dengan kalkulator dilakukan sebagai berikut: a. Misal nilai y = -3 dan x = 4, b. Tekan tombol angka

IDENTITAS TRIGONOMETRI

Gambar
  Nah, sin (sinus), cos (cosinus), dan tan (tangen) merupakan bagian dari trigonometri. Trigonometri sendiri merupakan cabang ilmu matematika yang mempelajari hubungan antara besar sudut dan panjang sisi pada segitiga. Kalau diartikan secara harfiah, trigonometri berasal dari bahasa Yunani, yaitu trigonon yang memiliki arti “tiga sudut” dan metron, artinya “mengukur”. Menarik, bukan? Yuk, kita bahas beberapa cara untuk menentukan nilai trigonometri! Perbandingan Trigonometri pada Segitiga Siku-Siku   Berdasarkan letak sudutnya, sisi-sisi pada segitiga siku-siku terbagi menjadi 3, yaitu sisi depan sudut, sisi samping sudut, dan sisi miring (hipotenusa). Sisi miring sudut berada di depan sudut siku-siku pada segitiga. Definisi perbandingan trigonometri pada segitiga siku-siku sebagai berikut:   Berdasarkan definisi di atas, diperoleh hasil penjabarannya, yaitu   Nilai Perbandingan Trigonometri untuk Sudut-Sudut Istimewa Sudut-sudut istimewa dalam trigonometri adalah sudut  , dst. Nah, pa

Sudut Berelasi Kuadran I, II, III, dan IV

Gambar
  Sudut Berelasi merupakan lanjutan dari ilmu trigonometri tentang kesebangunan pada segitiga siku-siku untuk sudut kuadran I atau sudut lancip (0 − 90°). Mari kita simak penjelasannya berikut. Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif. Sudut Berelasi di Kuadran I Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° − α) = cos α cos (90° − α) = sin α tan (90° − α) = cot α Sudut Berelasi di Kuadran II Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° + α) = cos α cos (90° + α) = -sin α tan (90° + α) = -cot α sin (180° − α) = sin α cos (180° − α) = -cos α tan (180° − α) = -tan α Sudut Berelasi Kuadran III Untuk α = sudut lancip, maka (180° + α) dan (

SUDUT-SUDUT BERELASI

Gambar
Sudut Berelasi merupakan lanjutan dari ilmu trigonometri tentang kesebangunan pada segitiga siku-siku untuk sudut kuadran I atau sudut lancip (0 − 90°). Mari kita simak penjelasannya berikut. Rumus Sudut Berelasi Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif. Sudut Berelasi di Kuadran I Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° − α) = cos α cos (90° − α) = sin α tan (90° − α) = cot α Sudut Berelasi di Kuadran II Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° + α) = cos α cos (90° + α) = -sin α tan (90° + α) = -cot α sin (180° − α) = sin α cos (180° − α) = -cos α tan (180° − α) = -tan α Sudut Berelasi Kuadran III Untuk α = sudut lancip, ma

SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI

Gambar
Masalah Kontekstual mengenai Sudut Elevasi dan Sudut Depresi Sebuah pohon berjarak 130 meter dari seorang pengamat dengan tinggi mata pengamat dari tanah adalah 168 cm. Apabila sudut elevasi yang terbentuk adalah 60° dari mata pengamat ke pucuk pohon, maka tinggi pohon tercebut adalah …. Jawab: Agar mudah dalam menyelesaikan masalah di atas, kita harus mampu mentransformasi setiap kalimat dari perrnyataan di atas dalam sebuah gambaran. Dik: Jarak pengamat ke pohon: 130 meter Tinggi pengamat: 168 cm = 1,68 meter Sudut Elevasi 60° Dit: Tinggi pohon. Penyelesaian: Pertama. Buatlah ilustrasinya Kedua. Buatlah pemisalan agar memudahkan kita dalam mencari perbandingannya Misalkan: Tinggi pohon – tinggi pengamat = t Jarak pengamat ke pohon =x Sehingga kita bisa membuat ilustrasi yang lebih sederhana dengan menggunakan segitiga siku-siku Dari gambar segitiga siku-siku di atas, jika kita menjadikan sudut 60° sebagai acuan, dimana: x adalah sisi samping dan t adalah sisi de