Soal kehidupan sehari hari SPLTV
Soal 1 :
Ali, Badar, dan Carli berbelanja di toko buku.
Ali membeli dua buku catatan, pensil, dan penghapus.
Ali harus membayar Rp4.700.
Badar membeli buku catatan, dua pensil, dan penghapus.
Badar harus membayar Rp4.300
Carli membeli tiga buku catatan, dua pensil, dan penghapus.
Carli harus membayar Rp7.100
Berapa harga buku catatan, pensil, dan penghapus?
Penyelesaian:
■ Misalkan bahwa:
Harga untuk sebuah buku tulis adalah x rupiah,
Harga untuk sebuah pensil adalah y rupiah dan
Harga untuk sebuah penghapus adalah z rupiah.
■ Dengan demikian, model matematika yang sesuai dnegan data persoalan di atas adalah sebagai berikut.
2x + y + z = 4.700
x + 2y + z = 4.300
__________________ -
x – y = 400
y = 2.500
x + 2y + z = 4.300
3x + 2y + z = 7.00
__________________-
−2x = −2.800
x = 1.400
■ Subtitusikan nilai x = 1.400 ke persamaan x – y = 400, sehingga diperoleh:
⇒ x – y = 400
⇒ 1.400 – y = 400
⇒ y = 1.400 – 400
⇒ y = 1.000
■ Subtitusikan nilai x = 1.400 dan y = 1.000 ke persamaan 2x + y + z = 4.700, sehingga diperoleh:
⇒ 2x + y + z = 4.700
⇒ 2(1.400) + 1.000 + z = 4.700
⇒ 2.800 + 1.000 + z = 4.700
⇒ 3.800 + z = 4.700
⇒ z = 4.700 – 3.800
⇒ z = 900
Jadi, harga untuk sebuah buku tulis adalah Rp1.400, harga untuk sebuah pensil adalah Rp1.000, dan harga untuk sebuah penghapus adalah Rp900
Soal 2 :
Sebuah bilangan terdiri atas 3 angka. Jumlah ketiga angkanya sama dengan 16. Jumlah angka pertama dan angka kedua sama dengan angka ketiga dikurangi dua. Nilai bilangan itu sama dengan 21 kali jumlah ketiga angkanya kemudian ditambah dengan 13. Carilah bilangan itu.
Penyelesaian:
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z – 2
100x + 10y + z = 21(x + y + z) + 13
Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y – z = –2
79x – 11y – 20z = 13
Sekarang kita eliminasi variabel y dengan cara berikut.
● Dari persamaan 1 dan 2
x + y + z = 16
x + y – z = −2
______________-
2z = 18
z = 9
● Dari persamaan 1 dan 3
x + y + z=16 |× 11|→11x + 11y + 11z=176
79x–11y20z = 13 |× 1|→79x– 11y 20z=13
________________+
90x-9z=189
Subtitusikan nilai z = 9 ke persamaan 90x – 9z = 189 sehingga diperoleh:
⇒ 90x – 9z = 189
⇒ 90x – 9(9) = 189
⇒ 90x – 81 = 189
⇒ 90x = 189 + 81
⇒ 90x = 270
⇒ x = 3
Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
⇒ x + y + z = 16
⇒ 3 + y + 9 = 16
⇒ y + 12 = 16
⇒ y = 16 – 12
⇒ y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.
Soal 3 :
Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
● Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z=33.000 |× 2|→2x + 6y + 4z=66.000
2x + y + z=23.500 |× 1|→2x + y + z=23.500
_______________________-
5y + 3z=42.500
● Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z=33.000
x + 2y + 3z=36.500
___________________-
y – z=−3.500
y=z – 3.500
Subtitusikan y = z – 3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
⇒ 5y + 3z = 42.500
⇒ 5(z – 3.500) + 3z = 42.500
⇒ 5z – 17.500 + 3z = 42.500
⇒ 8z – 17.500 = 42.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 60.000
⇒ z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.
⇒ y = z – 3.500
⇒ y = 7.500 – 3.500
⇒ y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
⇒ x + 3y + 2z = 33.000
⇒ x + 3(4.000) + 2(7.500) = 33.000
⇒ x + 12.000 + 15.000 = 33.000
⇒ x + 27.000 = 33.000
⇒ x = 33.000 – 27.000
⇒ x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.
Sumber : matematika.blogspot.com
Komentar
Posting Komentar