Soal persamaan dan pertidaksamaan rasional dan irasional
Contoh soal persamaan rasional
Contoh soal 3
Tentukan nilai x yang memenuhi persamaan rasional berikut.
Penyelesaian soal
Cara menjawab soal nomor 3 kita jumlahkan ruas kiri sehingga diperoleh:
→
x – 3 + (x – 2)
x – 1
= 4
→
2x – 5
x – 1
= 4
→ 2x – 5 = 4 (x – 1)
→ 2x – 5 = 4x – 4
→ 4x – 2x = -5 + 4
→ 2x = -1
→ x = -1/2
Contoh soal pertidaksamaan rasional
Contoh soal 1
Tentukan himpunan penyelesaian dari pertidaksamaan rasional
x2 – 4x + 4
x + 1
≺ 0
Penyelesaian soal
Pembilang pada soal diatas kita faktorkan sehingga bentuk soal menjadi:
(x – 2) (x – 2)
x + 1
Syarat yang berlaku pertidaksamaan diatas adalah adalah x + 1 ≠ 0 atau x ≠ -1.
Selanjutnya kita tentukan pembuat nol sebagai berikut:
(x – 2) (x – 2) = 0 maka diperoleh x = 2.
x + 1 = 0 maka x = – 1
Selanjutnya kita buat garis bilangan sebagai berikut:
Untuk x > 2 kita ambil angka 3 lalu subtitusi ke x2 – 4x + 4/x + 1 maka diperoleh 32 – 4 . 3 + 4/3 + 1 = + 1/4. Jadi tanda garis bilangan setelah 2 adalah positif.
Untuk interval -1 < x < 2 kita angka nol lalu subtitusi seperti poin diatas sehingga didapat 02 – 4 . 0 + 4/0 + 1) = + 4. Jadi tanda garis bilangan diantara – 1 hingga 2 adalah negatif.
Untuk interval x < -1 kita ambil angka -2 lalu subtitusi seperti 2 poin diatas maka hasilnya – 8. Jadi tanda garis bilangan sebelum -1 adalah negatif. Jika digambarkan seperti dibawah ini.
Jadi interval yang memenuhi adalah x < – 1.
Contoh soal persamaan irasional
Contoh soal 1
Tentukan nilai x yang memenuhi persamaan irasional √ x – 1 = x – 3
Penyelesaian soal
Untuk menjawab soal 1 kita tentukan dahulu syarat agar persamaan irasional berlaku yaitu:
x – 1 ≥ 0 atau x ≥ 1.
x – 3 ≥0 atau x ≥ 3.
Ambil syarat yang terbesar sehingga syarat yang berlaku pada persamaan irasional soal nomor 1 adalah x ≥ 3.
Selanjutnya kita hilangkan tanda akar dengan cara mengkuadratkan kedua ruas persamaan seperti dibawah ini:
( √ x – 1 )2 = (x – 3)2
(x – 1) = x2 – 6x + 9
x2 – 6x – x + 9 + 1 = 0
x2 – 7x + 10 = 0
(x – 2) (x – 5) = 0
x = 2 atau x = 5
Karena syarat yang berlaku pada persamaan nomor 1 adalah x ≥ 3 maka nilai x yang memenuhi adalah x = 5. Jadi soal nomor 1 jawabannya adalah x = 5.
Untuk memeriksa apakah jawaban ini benar atau salah maka caranya cukup mudah yaitu dengan subtitusi x = 5 ke persamaan irasional nomor 1:
√ x – 1 = x – 3
√ 5 – 1 = 5 – 3
√ 4 = 2
2 = 2
Kita lihat jawabannya sesuai.
Jika x = 2 kita subtitusi ke persamaan maka hasilnya sebagai berikut:
√ 2 – 1 = 2 – 3
1 = – 1.
Kita lihat hasilnya tidak sesuai.
Contoh soal pertidaksamaan irasional
Contoh soal 2
Tentukan himpunan penyelesaian dari pertidaksamaan irasional √ x – 1 > 2
Penyelesaian soal
Syarat yang berlaku pada pertidaksamaan irasional diatas sebagai berikut:
x – 1 ≥ 0.
x ≥ 1.
Kemudian kita kuadratkan pertidaksamaan diatas sehingga didapat:
( √ x – 1 )2 > 22
x – 1 > 4
x > 4 + 1
x > 5
Jadi himpunan penyelesaian pertidaksamaan ini adalah x > 5.
Contoh soal 3
Tentukan himpunan penyelesaian dari pertidaksamaan irasional √ 16 – x2 ≤ x + 4.
Penyelesaian soal
Syarat pertidaksamaan irasional:
16 – x2 ≥ 0.
x2 – 16 ≤ 0.
(x – 4)(x + 4) ≤ 0.
x = 4 dan x = -4
-4 ≤ x ≤ 4
Kemudian kita kuadratkan pertidaksamaan seperti dibawah ini:
( √ 16 – x2 )2 ≤ (x + 4)2
16 – x2 ≤ x2 + 8x + 16
16 – x2 – x2 – 8x – 16 ≤ 0
-2x2 – 8x ≤ 0
2x2 + 8x > 0
2x (x + 4) > 0
x ≤ – 4 dan x ≥ 0
Lalu kita buat garis bilangan antara syarat dengan hasil diatas sebagai berikut:
Jadi berdasarkan gambar diatas maka himpunan penyelesaian soal nomor 2 adalah x = -4 dan 0 ≤ x ≤ 4.
Sumber : soalfismat.com
Komentar
Posting Komentar