SISTEM PERTIDAKSAMAAN KUADRAT-LINEAR

Contoh soal 1

Gambarlah daerah penyelesaian pertidaksamaan kuadrat y > x2 – 8x + 12

Jawab :
(1) Titik potong dengan sumbu-X syarat y = 0
x2 – 8x + 12 = 0
(x – 6)(x – 2) = 0
x = 6 dan x = 2 Titik potongnya (2, 0) dan (6, 0)

(2) Titik potong dengan sumbu-Y syarat x = 0
y = x2 – 8x + 12
y = (0)2 – 8(0) + 12
y = 12 Titik potongnya (0, 12)

(3) Menentukan titik minimum fungsi y = x2 – 8x + 12
(4) Gambar daerah penyelesaiannya (Daerah yang diarsir adalah daerah penyelesaian)

Terkadang suatu fungsi kuadrat dapat ditentukan jika diketahui beberapa unsurnya, yaitu
a. Jika fungsi kuadrat diketahui titik potong dengan sumbu x yaitu (x1 , 0) dan (x2 , 0) maka persamaannya adalah f(x) = a(x – x1)(x – x2)
b. Jika suatu fungsi kuadrat diketahui titik baliknya P(p , q), maka persamaannya adalah f(x) = a(x – p)2 + q
Aturan ini dipakai untuk menyusun pertidaksamaan kuadrat jika diketahui gambar daerah penyelesaiannya.

Untuk lebih jelasnya, ikutilah contoh soal berikut ini:


Untuk lebih jelasnya ikutilah contoh soal berikut ini : 
08. Gambarlah daerah penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8 dalam tata koordinat Cartesius,

Jawab
Pertama akan digambar daerah penyelesaian 2x + 3y ≥ 12

Selanjutnya digambar juga daerah penyelesaian y ≤ –x2 + 2x + 8, dengan langkah langkah :
Menentukan tititk potong dengan sumbu-X syarat y = 0
–x2 + 2x + 8 = 0
x2 – 2x – 8 = 0
(x – 4)(x + 2) = 0
x = –2 dan x = 4 . Titik potongnya (–2 0) dan (4, 0)

Menentukan tititk potong dengan sumbu-Y syarat x = 0
y = –x2 + 2x + 8
y = –(0)2 + 2(0) + 8
y = 8 . Titik potongnya (0, 8)

2. Menentukan titik maksimum fungsi 
y = –x2 + 2x + 8 



Menggambar daerah penyelesaiannya (Daerah yang diarsir adalah daerah penyelesaian)


Irisan dari kedua daerah penyelesaian tersebut merupakan penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8
Gambar daerahnya adalah sebagai berikut:



Sumber : materimatika.com

Komentar

Postingan populer dari blog ini

SAYA SENANG SEKOLAH DI SMAN 63

Soal fungsi : Kuadrat, rasional, irasional

Sistem persamaan kuadrat kuadrat